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Background : Peeling-ballooning model for ELMs 
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P.B. Snyder, et.al Nucl. Fusion 47 (2007) 961 

 Peeling-ballooning model  Linear theory 
 ELM crash is triggered by linear peeling-

ballooning  instability; 
 Criterion for ELM crash: 

 
 
 

 Different ELMy H-mode regimes are due to 
different linear instability;  

 Filamentary structure is determined by 
linear instability; 

 Combined with KBM theory, pedestal 
width and height can be determined 
EPED model 
 

>0PB

 However, as nonlinear phenomenon, 
can ELM only depend on linear 
instability? 

A. Kirk, PRL 96, 185001 (2006) 
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 More to answer:  
？ In some experiments, pedestal reach its 

maximum profile gradient, but no ELM 
crash; 

？ Pedestal can crosses 𝛾𝑃𝐵 = 0 boundary 
without ELM; 

？ ELM crash happens at the region far away 
from 𝛾𝑃𝐵 = 0 boundary; 

？ ELM-free regimes; 
？ Why the filamentary structure has a 

certain toroidal mode number. 

The limitation of linear peeling-ballooning model:  
nonlinear phenomena needs nonlinear physics model  

To answer these questions, 
nonlinear ELM simulations are 
necessary. 

 BOUT++ framework 
 3/4/5/6 fields nonlinear model 

for ELM simulation 
 Shifted circular / real tokamak 

geometry 
 Well benchmarked with linear 

codes on linear growth rate 

ASDEX Upgrade result 
(A.Burckhart, Plasma Phys. Control. 
Fusion 52 (2010) 105010) 
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The onset of ELMs: linear or nonlinear threshold? 

 What triggers an ELM? 
 Linear peeling-ballooning instability (peeling-ballooning model); 

Linear phase Nonlinear ELM crash 

Linear phase Nonlinear ELM crash Nonlinear process 

Linear phase Nonlinear ELM crash 
Nonlinear 

process 
Linear 

dominant phase 

 If assume nonlinear interaction not important before ELM crash: linear threshold 

 Consider nonlinear interaction before the onset of ELMs: 

 Correct triggering process of ELM: nonlinear threshold 

But how? 



• Micro-turbulence (ITG/ETG/TEM): only final turbulence matters 

– Different numerical methods, different transition phases; 
– Same saturation turbulence  same physics 

•  ELMs: the whole process is important 

– Two different understanding on the triggering of ELMs 
 Single mode: The triggering of ELM only depends on linear instability; 
Multiple modes: The triggering of ELM also depends on nonlinear mode 

interaction;  
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Single  
mode  
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modes 

Nonlinear  
excitation 
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growing 
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interaction 

Initial perturbation in nonlinear simulations 
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Simulation model and equilibrium 

 3-field model for nonlinear 
ELM simulations 
 Including essential 

physics for the onset of 
ELMs 
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Initial perturbation: single mode and multiple modes 

 Peeling-ballooning unstable 
 ELM crash according to 

P-B model  

Linear growth rate Initial toroidal spectrum 



10 

Single mode: ELM crash || Multiple modes: no ELM 
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 ELM size 

 Single mode simulation: 
 Keep linear growing for 

200 𝜏𝐴; 
 Typical ELM crash ; 
  Consistent with P-B 

model ; 
 Multiple modes simulation: 

 Linear growing stops at 
100 𝜏𝐴;  

 ELM is replaced by 
steady turbulence 
transport; 

 Not consistent with P-B 
model 

Nonlinear mode interaction 

Nonlinear mode excitation 
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Different perturbation patterns (1/5 of the torus) 

Linear phase Early nonlinear phase Late nonlinear phase 

 Single mode: Filamentary structure is generated by linear instability; 
 Multiple modes: Linear mode structure is interrupted by nonlinear mode 

interaction and no filamentary structure appears 

Single  
Mode 

Multiple  
Mode 

𝟐𝝅/𝟓 



 Why single mode simulation is consistent with peeling-
ballooning model? 
 Both regard the triggering of ELMs and the generation of filamentary 

structure as linear process; 

 Before ELM crash, nonlinear process is not considered; 

 

 Multiple mode simulation  Nonlinear mode 
interaction happens before the onset of ELMs! 
 Nonlinear excitation needs higher amplitude than nonlinear mode 

interaction; 

 The generation of filamentary structure needs to overcome the 
interruption from nonlinear mode interaction; 

 The fluctuation status at pedestal is important to ELMs. 
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The triggering of ELMs and generation of filamentary 
structure are nonlinear process, not linear process! 

What is the status of fluctuation before ELMs? 



 Micro-turbulence: ITG, ETG, TEM, KBM… 
– Although strongly suppressed by EXB shearing, but no zero; 

 

Before ELM crashes, there always exists finite amplitude background 
turbulence 

Using the turbulence state generated at 𝒕 = 𝟐𝟓𝟎𝝉𝑨 as the initial 
condition for other equilibriums 

Initial perturbation from thermal noise 
 Infinite small perturbation ; 
 Mixture of multiple modes rather than certain single mode; 
 When the pedestal gets to linear unstable region, P-B 

instability will grow up and get to a turbulence state with 
finite amplitude at first 

     Self-generated peeling-ballooning turbulence 

No information 
Ignored  

Perturbation from other large scale events 
Last ELM; 
Sawtooth; 
External perturbation (heating, fueling, diagnostic) 

 

EPED 
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In the presence of peeling-ballooning 
turbulence, what is the condition for 

the onset of ELMs? 
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Modeling the evolution of pedestal by increasing pressure gradient 

22'

00 /2 BqRP 

Normalized pressure gradient Linear growth rate 

Higher pressure gradient 
 Larger growth rate; 
 Peaking up of spectrum;  
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With self-generated background turbulence, ELM is triggered in the 
case where a single mode can become dominant 

• 𝛼 < 2.35  
 Turbulence transport; 

 No dominant mode; 

• 𝛼 = 2.44 
 ELM crash; 

 Mode n=20 becomes 
dominant at first, then 
transferred  to n=15   
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ELM crash starts when n=20 mode becomes dominant and this mode 
can sustain for about 𝑻 = 𝟑𝟎𝒕𝑨 

Fig. Time evolution of potential spectrum 

 𝛂 = 𝟐. 𝟐𝟗: The life 
time of every mode 
is not long enough  

 𝛂 = 𝟐. 𝟒𝟒: N=20 
mode survives for 
about 𝟑𝟎𝐭𝐀  

 ELM is triggered 
when the fast 
growing mode 
becomes dominant 
for a long time 
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Filamentary structure may not be the most unstable mode due to 
nonlinear interaction 

 Triggering ELM and the generation of filamentary structure is different 
process! 
 ELM is triggered by the most unstable mode; 
 Filamentary structure depends on both linear instability and nonlinear 

mode interaction. 



Linear criterion for the onset of ELMs 𝜸 > 𝟎 is replaced by the new nonlinear 
criterion 𝜸 > 𝜸𝒄 
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• 𝜸𝒄 is the critical growth rate which is determined by 
nonlinear interaction happens in the background 
turbulence 
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Dimits shift ELM shift 

What is shifted? 
Onset of Thermal 

transport 
Onset of ELMs 

What cause the 
shift 

Zonal flow 
Background 
turbulence 

Linear instability ITG mode 
Peeling-ballooning 

mode 

Linear criterion 𝛄𝐈𝐓𝐆 > 𝟎 𝛄𝐏𝐁 > 𝟎 

Nonlinear criterion 𝛄𝐈𝐓𝐆 > 𝛄𝐃𝐢𝐦𝐢𝐭𝐬 𝛄𝐏𝐁 > 𝛄𝐜 

Basic idea Nonlinear process changes linear criterion 

The shift of ELM threshold can be compared with the well-known 
Dimits shift 
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Nonlinear Peeling-ballooning model for ELM 
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 𝛾 < 0 :  
     Linear stable region 
 0 < 𝛾 < 𝛾𝑐: 

Turbulence region 
      (Possible ELM-free        
regime) 
 𝛾 > 𝛾𝑐:  
      ELMy region 

 Different ELMy 
regimes depend on 
both linear instability 
and the turbulence 
state at the pedestal. 
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 More to answer:  
？ In some experiments, pedestal reach its 

maximum profile gradient, but no ELM crash; 
(turbulence delay the formation of 
dominant structure) 

？ Pedestal can crosses 𝛾𝑃𝐵 = 0 boundary 
without ELM;  (ELM shift) 

？ ELM crash happens at the region far away 
from 𝛾𝑃𝐵 = 0 boundary; (ELM shift) 

？ ELM-free regimes; (enhanced turbulence 
transport balances heating) 

？ Why the filamentary structure has a certain 
toroidal mode number? (A dominant 
structure is necessary to trigger ELM ) 
 

P.B. Snyder, et.al Nucl. Fusion 47 (2007) 961 

Nonlinear peeling-ballooning model provides a possibility to explain 
those unknown questions in linear peeling-ballooning mode 
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Validation of nonlinear peeling-ballooning model  

P.B. Snyder, et.al Nucl. Fusion 47 (2007) 961 

To distinguish with linear theory, more accurate 
measure of pedestal profiles may be necessary.  
Change the onset of ELMs by controlling edge 
turbulence 

 Keep profile fixed  linear instability does 
not change; 

  use external methods to change turbulence 
 𝛾𝑐 changes; 
 

 
Compare correlation time with linear growth rate; 
Compare toroidal mode number of filamentary 
structure with simulations 
Calculation of 𝛾𝑐 for real discharge 

Real geometry with separatrix; 
More accurate physics equations  
     6-field equations; 

 

Collaborations from experimentalists are more 
than welcome! 



Analytical expression for 𝜸𝒄? 
Sharpness of spectrum;  

Strength of mode interaction; 

 

How does a n=5 mode excite the n=6 mode 
(non-harmonics)? 
Physics: 3-wave interaction, parametric instability 

Need thermal noise; 

Numerical: If the simulation is perfect (no numerical 
noise), this is impossible? 

Numerical noise plays the same role like thermal 
noise? 
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Open questions 



• Once pedestal becomes linearly unstable, the self-
generated turbulence appears at first; 

• ELM is triggered when the fast growing mode 
becomes dominant for  enough time period; 

• Filamentary structure can be different from the 
most unstable mode due to nonlinear mode 
interaction; 

• ELM crash is determined by the nonlinear threshold 
𝜸 > 𝜸𝒄; 

• Different ELM regimes are determined by linear 
instability and background turbulence state; 

• Nonlinear peeling-ballooning model naturally 
implies the existing of ELM-free regime. 
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Summary 


